
Introduction to
Databases and

SQL

Files vs Databases
In the last chapter you learned how your PHP scripts can use external files to store
and retrieve data.

Although files do a great job in many circumstances, they're pretty inflexible as data
storage solution.

For example, if you need to filter or sort the data retrieved from a file, you have to

write your own PHP code to do it.

Not only is this tiresome, but if you're working with large sets of data — for example,
hundreds of thousands of user records — your script will probably grind to a halt.
Not good if you're hoping to build a popular Web site.

Databases
Often, the most efficient alternative to text files is to use a database engine —
commonly known as a Database Management System (DBMS) — to store, retrieve,
and modify the data for you.

A good database engine serves as a smart tool between you and your data,
organizing and cataloging the data for quick and easy retrieval.

You can use any database systems in your PHP applications. In this course, you'll
focus on just one database engine: MySQL.

Also, the database model dictates how the data is stored and accessed. Many
different database models are used today but here, we will focus on relational
model, which is the model MYSQL uses.

Relational Databases
In simple terms, a relational database is any database system that allows data to be
associated and grouped by common attributes. For example, a bunch of payroll
records might be grouped by employee, by department, or by date.

Typically, a relational database arranges data into tables, where each table is
divided into rows and columns of data.

In database language, each row in a table represents a data record : a set of
connected pieces of data, such as information relating to a particular person.

Likewise, each column represents a field : a specific type of data that has the same
significance for each record in the table, such as “ first name ” or “ age. ”

Relational Database Example
Here's an example of a database table. Suppose that the manager of a football team
sets up a database so that she can track the matches in which her players compete.

She asks each player to enter his details into the database after each match. After
two matches the manager's table, called matchLog , looks like this:

The Example
In this table, you can see that each row represents a particular set of information
about a player who played on a certain date, and each column contains a specific
type of data for each person or date.

Notice that each column has a name at the top of the table to identify it; this is
known as the field name or column name

Normalization
The manager soon realizes that this matchLog table is going to be huge after
everyone on the team has played an entire season's worth of games.

As you can see, the structure of the table is inefficient because each player's details
(number, name, phone number, and so on) are entered every time he plays a match.

Such redundancy is undesirable in a database. For example, say that the player with

the number 6 keeps dropping the ball, and his teammates decide to give him a new
nickname (which won't be mentioned here). To update the table, every one of this
player's records would have to be modified to reflect his new nickname.

Normalization
By normalizing our data, we can ensure that our data tables are efficient and
well-designed.

This chapter doesn't go into detail about normalization, which is quite a complex
topic. However, the basic idea is to break up your data into several related tables, so
as to minimize the number of times you have to repeat the same data.

The matchLog table contains a lot of repeating data. You can see that most of the
repeating data is connected with individual players. For example, the player with the
nickname “ Witblitz ” is mentioned twice in the table, and each time he ’ s mentioned,
all of his information (his player number, name, and phone number) is also included.

Normalization
Therefore, it makes sense to pull the
player details out into a separate players
table, as follows:

You can see that each player has just one
record in this table. The playerNumber
field is the field that uniquely identifies
each player (for example, there are two
Davids, but they have different
playerNumber fields). The playerNumber
field is said to be the table's primary key .

Normalization
Now that the player fields have been
pulled out into the players table, the
original matchLog table contains just
one field — datePlayed — representing
the date that a particular player
participated in a match.

Here comes the clever bit. We add the
playerNumber column back into the
matchLog table

Normalization
Now, by linking the values of the playerNumber fields in both the player and
matchLog tables, you can associate each player with the date (or dates) he played.

The two tables are said to be joined by the playerNumber field. The playerNumber
field in the matchLog table is known as a foreign key , because it references the
primary key in the players table, and you can't have a playerNumber value in the
matchLog table that isn't also in the players table.

Because the only repeating player information remaining in the matchLog table is
the playerNumber field, you've saved some storage space when compared to the
original table. Furthermore, it's now easy to change the nickname of a player,
because you only have to change it in one place: a single row in the players table.

Talking to Databases with SQL
You're probably wondering how to actually retrieve information from these two
tables, such as the nicknames of the players who played on March 3, 2004.

This is where SQL comes in.

SQL, the Structured Query Language, is a simple, standardized language for
communicating with relational databases.

SQL lets you do practically any database-related task, including creating databases
and tables, as well as saving, retrieving, deleting, and updating data in databases.

MySQL Data Types
When you create a database table — which you do later in this lecture — the type
and size of each field must be defined.

A field is similar to a PHP variable except that you can store only the specified type
and size of data in a given field.

For example, you can't insert characters into an integer field.

MySQL supports three main groups of data types

1. numeric
2. date/time
3. string

Numeric Data Types
You can store numbers in MySQL in many ways, but here we will only discuss two of
them:

You can add the attribute UNSIGNED after a numeric data type when defining a
field. An unsigned data type can only hold positive numbers.

Numeric Data Type Description Allowed Range of Values

INT Normal - sized integer – 2147483648 to 2147483647, or
0 to 4294967295 if UNSIGNED

BIT 0 or 1 0 or 1

Date and Time Data Types
As with numbers, you can choose from a range of different data types to store dates
and times. Here we only discuss two:

Numeric Data Type Description Allowed Range of Values

DATE Date 1 Jan 1000 to 31 Dec 9999

TIME Time – 838:59:59 to 838:59:59

String Data Types
MySQL lets you store strings of data in many different ways. Again we will only
focus on two of those:

Numeric Data Type Description Allowed Range of Values

VARCHAR(n) Variable-length string
of up to n characters

0 – 65535 characters

TEXT Normal-sized text field 0 – 65535 characters

SQL Statements
To actually work with databases and tables, you use SQL statements. Common
statements include:

● SELECT — Retrieves data from one or more tables
● INSERT — Inserts data into a table
● UPDATE — Updates data in a table
● DELETE — Deletes data from a table
● CREATE — Creates a database, table or index
● ALTER — Modifies the structure of a table
● DROP — Wipes out a database or table

A Sample SQL Statement
SELECT lastName, firstName
FROM users
WHERE firstName = ‘John’;

Take a closer look at the FROM and WHERE clauses in the query. The query returns
any record from the users table where the value of the firstName field is “ John".

Assuming there actually is a table called users in the database, the query's output
which is called the result set might look like this:

Simpleton John
Smith John
Thomas John

Setting Up MySQL
The MySQL database system comes with a number of different programs. The two
important ones that you learn about here are:

The MySQL server: This is the database engine itself. The program is usually called
mysqld or similar

The MySQL command-line tool: You can use this tool to talk directly to the MySQL

server so that you can create databases and tables, and add, view, and delete data.
It's handy for setting up your databases and also for troubleshooting. The program
name is simply mysql

Starting the MySQL Server
If you installed WampServer on Windows, or MAMP on Mac OS X, then the MySQL
server and command-line tool should already be installed on your computer.

In fact, MySQL server may already be running, but if it's not, here's how to start it:

WampServer on Windows: Examine the WampServer icon in your taskbar. If the
icon is black and white, your Apache and MySQL servers should be running
correctly. If the icon is part yellow or part red, then one or both of the servers aren't
running. Click the icon to display the WampServer menu, then choose the Start All
Services or Restart All Services option to start both the Apache and MySQL servers

Starting the MySQL Server
MAMP on Mac OS X: Open the MAMP folder inside your Applications folder in
Finder, then double-click the MAMP icon to launch the application. If the MySQL
server has a red light to the left of it, click the Start Servers button to start up both
the Apache and MySQL servers. Both lights should now be green

Creating a New Database
To create a new database, all you have to do is use the CREATE DATABASE
command.

Type the following to create a new database called mydatabase :

CREATE DATABASE mydatabase;

Creating a New Table
As you know, tables are where you actually store your data.

To start with, you'll create a very simple table, fruit , containing three fields: id (the
primary key), name (the name of the fruit), and color (the fruit's color).

CREATE TABLE fruit (
 id INT UNSIGNED AUTO_INCREMENT,
 name VARCHAR(30),
 color VARCHAR(30),
 PRIMARY KEY (id)
);

Creating a New Table
You've created a table with the following three fields:

id is the primary key. It uniquely identifies each row of the table. You created the id field
as INT UNSIGNED , which means it can hold integer values up to 4,294,967,295. You also
specified the keyword AUTO_INCREMENT . This ensures that, whenever a new row is
added to the table, the id field automatically gets a new unique value (starting with 1).
This means you don't have to specify this field's value when inserting data

name will store the name of each fruit. It's created as VARCHAR(30) , which means it can
hold strings of up to 30 characters in length.

color was created in the same way as name , and will be used to store the color of each
fruit.

Adding Data to a Table
To add a new row to a table, you use the SQL INSERT statement. In its basic form, an
INSERT statement looks like this:

INSERT INTO table VALUES (value1 , value2 , ...);

This inserts values into each of the fields of the table, in the order that the fields were
created.

Alternatively, you can create a row with only some fields populated. The remaining fields
will contain NULL (if allowed), or in the case of special fields such as an
AUTO_INCREMENT field, the field value will be calculated automatically.

To insert a row of partial data, use:

INSERT INTO table (field1 , field2 , ...) VALUES (value1, value2 , ...);

Adding Data to a Table
Now try adding some fruit to your table. you can add three rows to the fruit table by
inserting data into just the name and color fields (the id field will be filled automatically):

INSERT INTO fruit (name, color) VALUES (‘banana’, ‘yellow’);

INSERT INTO fruit (name, color) VALUES (‘tangerine’, ‘orange’);

INSERT INTO fruit (name, color) VALUES (‘plum’, ‘purple’);

Reading Data From a Table
To read data in SQL, you create a query using the SELECT statement.

SELECT field1, field2, ... FROM table WHERE condition;

name of the fields you
want to read from the
table e.g age

You can filter the
results using the
condition. e.g. age = 15

name of the table you
want to read data
from

Reading Data From a Table
If you want to read all fields from a table, you can use * instead of including all field
names.

SELECT * FROM fruit;

This SQL statement returns all records in the fruit table.

id name color

1 banana yellow

2 tangerine orange

3 plum purple

Reading Data From a Table
Or we may use the following statement if we only want to see the name and color of
all fruits.

SELECT name, color FROM fruit;

name color

banana yellow

tangerine orange

plum purple

Reading Data From a Table
Now if we want to retrieve a specific set of records with a given condition we can
add WHERE conditions to our query:

SELECT * FROM fruit where name = 'banana';

This query will return all records in the fruit table with the name 'banana'

id name color

1 banana yellow

Reading Data From a Table
Similarly we can specify conditions on other fields:

SELECT * FROM fruit where id >= 2;

This query will return all records in the fruit table where id >= 2

id name color

2 tangerine orange

3 plum purple

Reading Data From a Table
We can also combine multiple conditions by using AND/OR operators:

SELECT * FROM fruit where id >= 2 AND name = 'plum';

Here we will get a record with id >= 2 and the name = 'plum'

id name color

3 plum purple

Updating Data in a Table
You change existing data in a table with the UPDATE statement.

As with the SELECT statement, you can (and usually will) add a WHERE clause to
specify exactly which rows you want to update.

If you leave out the WHERE clause, the entire table gets updated.

UPDATE table SET field1 = value1, field2 = value2, ... WHERE condition;

pairs of field name and
values e.g. age =15 will
set the age to 15 for all
records that the
condition is true

You can limit the set of
records that you want
to update by using a
condition. e.g. name =
'sally'

name of the table you
are updating

 Here's how to use UPDATE to change values in your fruit table:

UPDATE fruit SET name = 'grapefruit', color = 'yellow' WHERE id = 2;

This SQL statement changes the name and color field values for the record with id =
2. If we read data in the table after this statement, the table looks like this:

SELECT * FROM fruit;

Updating Data in a Table

id name color

1 banana yellow

2 grapefruit yellow

3 plum purple

Deleting Data from a Table
Deleting works in a similar way to updating.

To delete rows, you use the DELETE statement. If you add a WHERE clause, you can
choose which row or rows to delete; otherwise all the data in the table are deleted
(though the table itself remains)

DELETE FROM table WHERE condition;

name of the table you
want to delete data
from

You can limit the set of
records that you want
to delete by using a
condition. e.g. name =
'sally'

Deleting Data from a Table
Let's delete all records with id = 2 in our fruit table:

DELETE FROM fruit where id = 2;

This will delete one record from our fruit table. We can use SELECT to read data in
our table :

SELECT * FROM fruit;

id name color

1 banana yellow

3 plum purple

Deleting Tables
To delete a table entirely, use the DROP TABLE statement

DROP TABLE table;

Note that this will delete the table and all records in it. This operation is not
reversible.

This is the name of the
table you want to
delete entirely

Deleting Databases
To delete a database entirely, use the DROP DATABASE statement

DROP DATABASE db;

Note that this will delete the database and all tables and all records in it. This
operation is not reversible.

This is the name of the
database you want to
delete entirely

